دسته بندی | اقتصاد |
بازدید ها | 40 |
فرمت فایل | doc |
حجم فایل | 3573 کیلو بایت |
تعداد صفحات فایل | 112 |
-تاریخچه اندازه گیری در جهان
سابقه اندازه گیری به عهد باستان باز می گردد و می توان آن را به عنوان یکی از قدیمی ترین علوم به حساب آورد .
در اوایل قرن 18 جیمز وات (JAMES WATT) مخترع اسکاتلندی پیشنهاد نمود تا دانشمندان جهان دور هم جمع شده یک سیستم جهانی واحد برای اندازه گیریها به وجود آورند . به دنبال این پیشنهاد گروهی از دانشمندان فرانسوی برای به وجود آوردن سیستم متریک (METRIC SYS) وارد عمل شدند .
سیستم پایه ای را که دارای دو استاندارد یکی «متر» برای واحد طول و دیگری «کیلوگرم» برای وزن بوده ، به وجود آوردند . در این زمان ثانیه (SECOND) را به عنوان استاندارد زمان (TIME) و ترموسانتیگراد را به عنوان استاندارد درجه حرارت مورد استفاده قرار می دادند .
در سال 1875 میلادی دانشمندان و متخصصات جهان در پاریس برای امضاء قراردادی به نام پیمان جهانی متریک (INTERNATIONAL METRIC COMVENTION) دور هم گرد آمدند . این قرارداد زمینه را برای ایجاد یک دفتر بین المللی اوزان و مقیاسها در سورز (SEVRES) فرانسه آماده کرد. این مؤسسه هنوز به عنوان یک منبع و مرجع جهانی استاندارد پابرجاست .
امروزه سازندگان دستگاههای مدرن آمریکایی ، دقت عمل استانداردهای اصلی خود را که برای کالیبراسیون دستگاه های اندازه گیری خود به کار می برند ، به استناد دفتر
استانداردهای ملی (N.B.S)تعیین می نمایند .
لازم به یادآوری است دستگاه های اندازه گیری و آزمون به دلایل گوناگون از جمله فرسایش ، لقی و میزان استفاده ، انحرافاتی را نسبت به وضعیت تنظیم شده قبلی نشان می دهند .
هدف کالیبراسیون اندازه گیری مقدار انحراف مذکور در مقایسه با استانداردهای سطوح بالاتر و همچنین دستگاه در محدوده «تلرانس» اصلی خود می باشد .
فهرست مطالب
فصل اول
اندازه گیری
1-تاریخچه اندازه گیری در جهان
تعریف اندازه گیری :
صحت :
رواداری :
دقت :
تکرارپذیری :
دامنه و میزان تغییرات :
خطای ثابت :
خطای مطلق :
تصحیح :
منابع خطای اندازه گیری :
خطاهای ناشی از دستگاه اندازه گیری :
خطاهای ناشی از مشاهده در اندازه گیری :
تجزیه و تحلیل اطلاعات اندازه گیری :
وسایل اندازه گیری :
کاربرد برچسبهای کالیبراسیون
نیازمندیهای آزمایشگاه دستگاه های اندازه گیری دقیق
روشنایی :
دما :
فشار
گرد و غبار
رطوبت :
لرزش :
صدا :
کنترل امواج مغناطیسی :
سایر امکانات :
فصل دوم
آزمایش سیستمهای اندازه گیری
مباحث
1) کالیبراسیون Calibration
(شامل 5 گزارش )
2) اندازه گیری برای مرحلة اول مهندسی معکوس و به دست آوردن تلرانس برای قطعات
(شامل 4 گزارش)
3) به دست آوردن لقی ( محوری و شعاعی )
(شامل 2 آزمایش)
4) کنترل در شفت
شامل 2 آزمایش
5) اندازه گیری زاویه های یک چرخدندة مخروطی
فصل سوم
هفت ابزار کنترل کیفیت
استفاده از هفت ابزار کنترل کیفیت در طرحریزی کنترل فرآیند
گامهای سیستماتیک جهت طرحریزی کنترل فرآیند
1-شناخت محصول
· لیست قطعات
· لیست مواد
· برگه های مسیر تولید
· نمودار OPC ، نمودار مونتاژ
· استاندارد محصول
· آشنایی با محل کاربرد محصول و جمع آوری نظرات مشتریان
· جمع آوری آمار ضایعات و دوباره کاری فرآیند - آمار محصولات نهایی معیوب - آمار محصوللات برگشتی
2-تعیین سطح کیفیت قابل قبول برای محصول
3-تعیین سطح کیفیت قابل قبول برای عملیات های فرآیند
4-تعیین سطح کیفیت قابل قبول برای مواد و قطعات ورودی
5-رسم نمودار علت و معلول
6-تهیه برگه های کنترل
7-تکمیل برگه های کنترل برای یک دوره خاص
8-رسم هیستوگرامها و نمودارهای پاره تو
9-رسم نمودار تمرکز نقص ها
10-تعیین مشخصات کنترلی در هر ایستگاه
11-تعیین ایستگاه های کنترل و مشخصه هایی که نیاز به کنترل دارند .
12-تعیین نوع ابزار کنترلی برای کنترل مشخصه های هر ایستگاه (نمودار کنترل/طرح نمونه گیری / هر دو)
13-طراحی نمودارهای کنترل و طرح های نمونه گیری
14-تهیه طرح کنترل (کیفیت) محصول
فصل چهارم
آزمایشگاه خواص مکانیکی – تست استحکام کششی
هدف از انجام آزمایش:
وسایل و تجهیزات مورد نیاز:
تئوری آزمایش:
برخی از عوامل موثر بر دمای انتقال عبارتند از:
مراحل انجام آزمایش:
بررسی نتایج:
فصل پنجم
ماشینهای اندازه گیری C.M.M
دستگاه اندازه گیری سه بعدی
دستگاههای اندازه گیری مختصاتی
تعریف:
علل استفاده از دستگاه CMM
الف- سرعت و دقت بر اندازه گیری
ب- قابلیت اندازه گیری تلرانسهای فرم و وضعیت
ج- قابلیت برنامه ریزی
د- قابلیت اندازه گیری پیوسته (Scaning)
هـ- قابلیت تولید برنامه های اندازه گیری
و- تعریف ریاضی محورهای بصورت ساده
ز- اندازه گیری اپتیکی
ساختار ماشین CMM
سخت افزار: قسمتهای مختلف یک دستگاه CMM عبارتند از:
1- راهنمای محور x
2- قوای محرکه سیستم
3- روکش بالشتکهای هر سه محور دستگاه
4- خط کش
5- پل فلزی و ستون راهنمای محور y دستگاه
6- پل فلزی و ستون راهنمای محور y دستگاه
7- ستون محور Z دستگاه
8- قطعه تعادل ستون محور Z
9- کابین برق دستگاه
10- کامپیوتر
11- پراپ و پروپ گیر
12- سنسورهای توقف اضطراری
معرفی یک نرم افزار CMM
1- اکسل AXEL
2- نرم افزار UMESS :
3- نرم افزار SAM :
4- نرم افزار ACE :
5- نرم افزار KUM :
6- نرم افزار G-RAM , G-AGE , GON :
یک ویژگی مهم
اندازه گیری تلرانسهای فرم و وضعیت
انواع CMM
ب: CMM roller bring
تنظیم:
محورها:
نظافت:
نکات فنی:
فندانسیون:
نصب و راه اندازی دستگاه CMM
دسته بندی | ساخت و تولید |
بازدید ها | 3 |
فرمت فایل | |
حجم فایل | 4761 کیلو بایت |
تعداد صفحات فایل | 165 |
دسته بندی | برق |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 25 کیلو بایت |
تعداد صفحات فایل | 15 |
اندازه گیری سیستم قدرت
22-1 مقدمه
سنجش دقیق ولتاژ، جریان یا دیگر پارامتر های شبکه ی نیرو پیش نیازی برای هر شکلی از کنترل می باشد که از کنترل اتوماتیک حلقه ی بسته تا ثبت داده ها برای اهداف آمارب می تواند متغیر می باشد . اندازه گیری و سنجش این پارامتر ها می تواند به طرق مختلف صورت گیرد که شامل استفاده از ابزار ها ی مستقیم خوان و نیز مبدل های سنجش الکتریکی می باشد.
مبدل ها خروجی آنالوگ D.C دقیقی را تولید می کنند – که معمولا یک جریان است- که با پارامتر های اندازه گیری شده مرتبط می باشد (مولفه ی مورد اندازه گیری)آنها ایزولاسیون الکتریکی را بوسیله ی ترانسفورماتور ها فراهم می کنند که گاها به عنوان ابزولاسیون گالوانیکی بین ورودی و خروجی بکار برده می شوند.این مسئله ابتداء یک مشخصه ی ایمنی محسوب می شود ولی همچنین به این معنی است که سیم کشی از ترمینال های خروجی و هر دستگاه در یافت کننده می تواند سیک وزن و دارای مشخصات عایق کاری کمی باشد مزیت های ابزار های اندازه گیری گسسته در زیر ارائه گردیده است.
الف) نصب شدن در نزدیکی منبع اندازه گیری، کاهش بار ترانسفورماتور وسیله و افزایش ایمنی بدنبال حزف سلسله ی سیم کشی طولانی.
ب) قابلیت نصب نمایشگر دور از مبدل
ج) قابلیت استفاده از عناصر نمایشگر چندگانه به ازای هر مبدل
د) بار روی CT’s/VT’s بصورت قابل ملاحظه ای کمتر است.
خروجی های مبدل ها ممکن است به روش های مختلف از ارائه ی ساده ی مقادیر اندازه گیری شده برای یک اپراتور تا بهره برداری شدن بوسیله ی برنامه ی اتوماسیون سک شبکه برای تعیین استراتژی کنترلی مورد استفاده قرار گیرد.
2-22) مشخصه های عمومی
مبدل ها می توانند دارای ورودی ها یا خروجی های منفرد و یا چند گانه باشند ورودی ها ، خروجی ها و تمامی مدار های کمکی از همدیگر مجزا خواهند شد. ممکن است بیش از یک کمیت ورودی وجود داشته باشد و مولفه ی مورد اندازه گیری می تواند تابعی از آنها باشد-هرچند مبدل اندازه گیری که مورد استفاده قرار گیرد معمولا انتخابی بین نوع مجزا و پیمانه ای وجود دارد که نوع اخیر یعنی پیمانه ای توسط پریز واحد ها را به یک قفسه ی ایتاندارد وصل می کند موقعیت و اولویت استفاده نوع مبدل را تعیین می کند.
1-2-22) ورودی های مبدل
ورودی مبدل ها اغلب از ترانسفورماتور ها گرفته می شود که این امر ممکن است از طرق مختلف صورت پذیرد . به طور کامل ، برای بدست آوردن بالا ترین دفت کلی باید کلاس اندازه گیری ترانسفورماتور های دستگاه مورد استفاده قرار گیرد. و سپس خطای ترانسفورماتور، ولو اینکه از راه جبر و بصورت ریاضی گون، به خطای مبدل اضافه خواهد شد. هرچند که اعمال مبدل ها به کلاس محافظتی ترانسفورماتور های دستگاه عمومیت دارد و به این علت است که مبدل ها معمولا بر اساس توانایی تحمل اضافه بار کوتاه مدت مشخص روی جریان ورودی آنها توصیف می شوند. مشخصه های عمومی مقاومتی مناسب برای اتسال به کلاس حفاظتی ترانسفور ماتور های دستگاه برای مدار ورودی جریان یک ترانسفور ماتور در ذیل آمده است:
الف)300 درصد کل جریان پیوسته
ب)2500 درصد برای سه ثانیه
ج)5000 درصد برای یک ثانیه
مقاومت ظاهری ورودی هر مدار ورودی جریان باید تا حد ممکن پایین و برای ولتاژ ورودی باید تا حد ممکن بالا نگه داشته شود. این کار خطا ها را بعلت عدم تناسب مقاومت ظاهری کاهش می دهد .
2-2-22) خروجی مبدل ها
خروجی یک مبدل معمولا منبع جریان می باشد. و به این معنا یت که در طول محدوده تغییرات ولتاژ خروجی (ولتاژ مقبول) مبدل ، وسایل نمایشگر اضافی بدون محدودیت و بدون هرگونه نیازی برای تنظیم مبدل می تواند اضافه گردند.میزان ولتاژ قابل قبول ، حداکثر مقاومت ظاهری حلقه ی مدار خروجی را تعیین می کند . به طوری که میزان بالای ولتاز قابل قبول ، دوری موقعیت دستگاه مزبور را تسهیل می کند.
در جایی که حلقه ی خروجی برای اهداف کنترلی مورد استفاده قرار گرفته می شود ، دیود زینر های به طور مناسب ارزیابی شده گاها در میان ترمیتال های هر وسیله در حلقه ی سری برای حفاظت در برابر امکان تبدیل مدارات داخلی آنها به مدار باز نصب می شوند.این امر اطمینان می دهد که یک وسیله خراب در داخل حلقه منجر به خرابی کامل حلقه ی خروجی نمی گردد. طبیعت جریان ساده ی خروجی مبدل حقیقتا ولتاژ را بالا می برد و تا تحت فشار قرار دادن سیگنال خروجی صحیح اطراف حلقه ادامه می یابد.
3-2-22) دقت مبدل
معمولا دقت از اولویت های اولیه می باشد . اما در مقایسه باید اشاره گردد که دقت می تواند به طرق مختلف تعریف گردیده و شاید تحت تعاریف بسیار نزدیک شرابط استفاده اعمال گردد. مطالبی که در زیر اشاره می گردد تلاش دارد تا برخی از موضوعاتی که دارای عمومیت بیشستری هستند و نیز ارتباط آنها با شرایطی که در عمل رخ می دهد با استفاده از تروینولوژی معین در ICE 60688 را روشن می سازد.
دقت مبدل بوسیله ی عوامل مختلف (به یک مقدار کم یا زیاد) تحت تاثیر فرار خواهد گرفت که با نام مقادیر تاثیر شناخته می شود که روی آن استفاده کننده کنترل کمی داشته یا حتی هیچ کنترلی ندارد. جدول 1-22 لیست کاملی از مقادیر تاثیر را به نمایش در آورده است.دقت تحت گروهی از شرایط که به عنوان شرایط مرجع شناخته می شوند بررسی می گردند. شرایط مرجع برای هر یک از مقادیر تاثیر می تواند به صورت یک مقدار منفرد (برای مثال 20 درجه ی سانتی گراد) یا محدوده ی تغییرات ( برای مثال 10 تا 40 درجه ی سانتی گراد ) بیان گردد.
جدول 1-22 ) --------------------------------------------------------
خطای تعیین شده تحت شرایط مرجع به خطای ذاتی باز می گردد. همه ی مبدل هایی که دارای خطای ذاتی یکسانی هستند در یک کلاس دقت مشخص گروهبندی می شوند که بوسیله ی نشانه ی کلاس مذکور مشخص می گردند. نشانه ی کلاس با خطای ذاتی بوسیله درصدی مشخص می گردد( برای مثال مبدلی با خطای ذاتی 0.1 درصد از کل مقیاس دارای نشانه ی کلاسی برابر با 0.1 می باشد) یکی است.
سیستم نشانه ی کلاسی که در IEC 60688 استفاده می شود نیازمند این است که تغییرات برای هر یک از مقادیر تاثیر دقیقا مرتبط با خطای ذاتی باشد و این به این معنی است که بیشترین مقدار دقت آن است که کارخانه ی سازنده ادعا دارد و کمترین مقدار ناشی از حدود ناپایداری است.
به علت آنکه مقادیر تاثیر زیادی وجود دارند ، پایداری ها به صورت منفرد تعیین می گردند ضمن اینکه همه ی دیگر مقادیر تاثیر در شرایط مرجع نگهداری می شوند محدوده تغییرات اسمی استفاده از یک مبدل بوسیله ی کارخانه ی سازنده مشخص می گردد. محدوده تغییرات اسمی به طور طبیعی گسترده تر از میزان یا محدوده ی تغییرات مرجع می باشد. مطابق با محدوده ی تغییرات اسمی استفاده از یک مبدل خطاهای اضافی به علت یک خزا روی هم جمع می شوند. این خطا های اضافی به مقدار تاثیر منفردی که اغلب نشانه ی کلاس می باشد محدود می شود. جدول 2-22 جزئیات اجزاء محدوده ی تغییرات نوعی یک مبدل را طبق استاندارد ارائه می کند.
جدول 1-22 ) --------------------------------------------------------
همچنین آشفتگی برای مشخص شدن کارائی تحت شرایط عملی واقعی بالا می رود. سیگنال خروجی اغلب یک مولفه ی اندازه گیری آنالوگ D.C می باشد اما از یک مقدار ورودی متناوب بدست می آید و به ناچار مقدار مشخصی از اجزاء متناوب یا موج دار را دارار خواهد بود. موج یا شکن بوسیله ی اختلاف بین مقادیر ماکسیمم و مینیمم اخزاء متناوب سیگنال خروجی تعریف می گردند . هر چند که برخب سازنده ها از اختلاف بین میانگین تا ماکسیمم یا r.m.s (Remote Monipulator system) استفاده می کنند. برای با معنی بودن شرایطی که تحت آن مقدار موج یا شکن اندازه گرفته شده است باید توضیح داده شود ، برای مثال 0.35% r.m.s = 10% peak-to-peak ripple .
با تغییرات شرایط مولفه ی مورد اندازه گیری سیگنال به طور آنی از تغییرات طبعیت نمی کند بلکه دارای تاخیر زمانی می باشدو این مسوله به علت فیلترینگ مورد نیاز برای کاهش شکن یا ،در مبدل هایی که از تکنولوژی رقمی استفاده می کنند ، ممانعت از بد نمایی زمان واکنش معمولا می تواند در عوض افزایش شکن کاهش یابد و بالعکس. مبدل هایی که دارای زمان واکنش گکمتر از معمول هستند می توانند برای چنان مواردی مورد استفاده قرار گیرد جایی که سیستم نیرو، نوسانات ، افت ها و نوسانات فرکانس پایین را که باید مانیتور گردد تحمل می کند.
مبدل هایی که دارای جریان خروجی می باشند ولتاژ خروجی ماکسیممی دارند که به عنوان ولتاژ قابل قبول شناخته می شود. اگر مقاومت بار خیلی بالا باشد و از این رو ولتاژ قابل قبول از یک حدی تجاوز کند، خروجی مبدل دارای دقت بالایی نخواهد بود.
میدل های مخصوصی بوسیله ی سازندگان برای استفاده روی سیستم هایی که شکل موجی ، سینوسی خالص نیست مشخصه بندی شده اند. آنها عموما به انواع دریافت حقیقی r.m.s باز می گردند . برای چنین انواعی عامل اختشاش شکل موج یک مقدار تاثیر می باشد. دیگر مبدل ها به دربافت میانگین باز می گردند و برای پاسخ به مقدار r.m.s یک مرجع سینوسی خالص تنظیم شده اند. اگر شکل موج ورودی به هم بریزد خطا ها بوجود خواهند آمد . برای مثال خطایی به علت آسیب دیدن سومین هارمونیک می تواند بالغ بر یک در صد به ازای سه درصد هارمونیک شود. اولین بار که دستگاه نصب شد استفاده کننده توقع دارد که دقت مبدل در طی زمان پایدارباقی بماند. استفاده از اجزاء دارای کیفیت بالا و نیز بررسی محافظه کارانه ی نیرو به اطمینان از پایداری طولانی مدت کمک خواهد کرد ولی شرایط محیطی مخالف یا ناسازگار می تواند منجر به تغییر کارایی گردد که ممکن است نیاز به جایگزینی آن در طی طول عمر دستگاه گردد.
3-22) تکنولوژی مبدل های دیجیتال
مبدل های دارای سیستم نیروی دیجیتال از تکنولوژی مشابهی که در مورد رله های رقمی و دیجیتال که در فصل هفتم توضیح داده شده استفاده می کنند. سیگنال های آنالوگ حاصل شده از CT’s و VT’s برای جلوگیری از بدنمایی فیلتر می شوند ( با استفاده از مبدل A/P به دیجیتال تبدیل می شوند( و سپس پردازش سیگنال برای بدست آوردن اطلاعات مورد نیاز انجام می گیرد. اطلاعات پایه در فصل هفتم ارائه گردیده است. نرخ نمونه برداری 64 (نمونه/چرخه) یا بیشتر ممکن است مورد استفاده قرار گیرد و کلاس دقت آن به طور معمول 0.5 می باشد.
خروجی ها ممکن است هم دیجیتال و هم آنالوگ باشند . خروجی های آنالوگ به وسیله ی عوامل تاثیر گزار روی دقت آنچنانکه در بالا توضیح داده شد تحت تاثیر قرار می گیرند. خروجی های دیجیتال نوعا در شکل یک پیوند مخابراتی با انواع موجود RS232 و RS458 هستند زمان واکنش بسته به نرخی که مقادیر به پیوند مخابراتی انتقال داده می شوند و تاخبر در پردازش داده ها درد انتهای دریافت کننده ممکن است در مقایسه با مبدل های آنالوگ قابل تحمل تر باشند .
در حقیقت همه ی مقادیر تاثیری که یک مبدل آنالوگ سنتی را تحت تاثبر قرار می دهند در مبدل های دیجیتالی نیز در برخی اشکال مشاهده می شوند ولب خطاهای ایحاد شده شاید خیلی کمتر از نوع مشابه در مبدل های آنالوگ بوده و نیز در یک چرخه ی زمانی طولانی بسیار پابدار تر می باشد.
مزیت استفاده از تکنولوژی رقمی در مبدل ها به صورت زیر می باشد:
1- پایداری طولانی مدت بهبود شده
2- اندازه گیری r.m.s با دقت خیلی بیشتر
3- امکان ارتباطی بهبود یافته
4- قابلیت برنامه ریزی مقیاس گزاری
5- محدوده ی تغییرات گسترده تر از توابع
6- کاهش یافتن اندازه ی دستگاه
دسته بندی | حسابداری |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 43 کیلو بایت |
تعداد صفحات فایل | 67 |
*مقاله درمورد مفاهیم حسابداری بهای تمام شده*
گفتار اول : حسابداری بهای تمام شده ( حسابداری صنعتی )
آنچه که در کشور ما به عنوان حسابداری صنعتی خوانده می شود حوزه ای از حسابداری است که با اندازه گیری و ثبت و گزارش اطلاعات مربوط به اقدام بهای تمام شده سر و کار دارد .
2 ـ موارد کاربرد حسابداری بهای تمام شده :
کاربرد اولیة اطلاعات مربوط به بهای تمام شده در تصمیم گیری ها و ارزیابی عملکردهای توسط مدیران است که در داخل ساختمان توسط مدیران به منظور ارزیابی فعالیتهای سازمان یا نیروی انسانی و یا به عنوان مبنای برای اتخاذ تصمیم بکار برده می شود .
3 ـ حسابداری مالی و حسابداری بهای تمام شده :
حسابداری مالی : با تهیه آن دسته از اطلاعات سر و کار دارد که برای استفاده کنندگان خارجی از مؤسسه نظیر سرمایه گذاران و بستانکاران و تحلیلگران مالی و اتحادیه های کارگری و علاقه مندان خارجی تهیه می شود .
حسابداری بهای تمام شده : با گردآوری و تحلیل اطللاعاتی در مورد بهای تمام شدة کالا و خدمات مؤسسات سر و کار دارد که مورد استفادة مدیران مؤسسه در امر برنامه ریزی ، کنترل و تصمیم گیری واقع می شود .
4 ـ هزینه برای بهای تمام شده :
بهای تمام شده به معنی منابع از دست رفته در برابر تحصیل کالا و خدمات مورد نیاز هنگامیکه این منابع حاصل می شود بهای تمام شده تبدیل به هزینه می شود و آن دسته از اقلام بهای تمام شده که هنوز مورد منفعت قرار نگرفته به صورت دارایی در حسابها و صورتهای مالی نشان داده می شود .
5 ـ تعریف زیان و تفاوت آن با هزینه :
هزینه ها در برابر درآمدها قرار می گیرند تا سود و زیان یک دورة مالی را مشخص سازند درآمد : قیمت کالایی است که فروخته می شود و یا خدمتی که عرضه می شود در برخی موارد کالاها و خدمات خریداری شده به قصد تحصیل انتفاعی بدون آنکه سودی از آنها حاصل شود ارزش خود را از دست
می دهند این گونه اقلام بهای تمام شده اصطلاحاً تبدیل به زیان شده و در صورت سود وزیان از درآمد کسر می شوند .
6 ـ دستمزد و انواع آن :
2 نوع دستمزد داریم : دستمزد مستقیم ، دستمزد غیر مستقیم
1 ـ دستمزد مستقیم : آن دسته از کارگرانی را که مستقیماً در ارائه خدمات یا تبدیل مواد مستقیم به کالای ساخته شده دخالت دارند و بدون دخالت آنها تولید و ارائه خدمات امکان پذیر نیست ، دستمزد این گونه کارگران را به عنوان دستمزد مستقیم محاسبه می کنیم . مثال : کارگران خط تولید یا مونتاژ
یک کالا .
2 ـ دستمزد غیرمستقیم : دستمزد آن دسته افراد که در تولید کالا و یا ارائه خدمات دخالت دارند اما بطور مستقیم حساب نمی شوند را می نامند : مانند سه کارگران یا بازرسان .
7 ـ مواد و انواع آن :
به طور کلی ما 2 نوع مواد داریم :
1 ـ مواد مستقیم : آن دسته از موادی که در تولید کالا نقش اساسی را دارند
2 ـ مواد غیر مستقیم : آن دسته از موادی که در تولید کالا نقش اساسی را ندارند
مثال مواد مستقیم مانند : چوب در مبلمان و یا پارچه در لباس و مواد غیر مستقیم مانند : روغن جلاء دهنده در مبلمان و غیره . . .
مواد مستقیم : محتوای اصلی محصول تولید شده را تشکیل می دهد
8 ـ سر بار تولید : تمام اقلام بهای تمام شده محصول به استثنای مواد مستقیم و دستمزد مستقیم اصطلاحاً سر بار می نامند .
مهمترین اجزای سر بار عبارتند از : مواد غیر مستقیم و دستمزد غیر مستقیم و هزینه های عمومی کارخانه نظیر استهلاک ساختمان و تجهیزات کارخانه .